StackAI
StackAI is an enterprise AI automation platform that allows organizations to build end-to-end internal tools and processes with AI agents. It ensures every workflow is secure, compliant, and governed, so teams can automate complex processes without heavy engineering.
With a visual workflow builder and multi-agent orchestration, StackAI enables full automation from knowledge retrieval to approvals and reporting. Enterprise data sources like SharePoint, Confluence, Notion, Google Drive, and internal databases can be connected with versioning, citations, and access controls to protect sensitive information.
AI agents can be deployed as chat assistants, advanced forms, or APIs integrated into Slack, Teams, Salesforce, HubSpot, ServiceNow, or custom apps.
Security is built in with SSO (Okta, Azure AD, Google), RBAC, audit logs, PII masking, and data residency. Analytics and cost governance let teams track performance, while evaluations and guardrails ensure reliability before production.
StackAI also offers model flexibility, routing tasks across OpenAI, Anthropic, Google, or local LLMs with fine-grained controls for accuracy.
A template library accelerates adoption with ready-to-use workflows like Contract Analyzer, Support Desk AI Assistant, RFP Response Builder, and Investment Memo Generator.
By consolidating fragmented processes into secure, AI-powered workflows, StackAI reduces manual work, speeds decision-making, and empowers teams to build trusted automation at scale.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Pinecone
The AI Knowledge Platform.
The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Fully managed and developer-friendly, the database is easily scalable without any infrastructure problems.
Once you have vector embeddings created, you can search and manage them in Pinecone to power semantic searches, recommenders, or other applications that rely upon relevant information retrieval.
Even with billions of items, ultra-low query latency Provide a great user experience. You can add, edit, and delete data via live index updates. Your data is available immediately. For more relevant and quicker results, combine vector search with metadata filters.
Our API makes it easy to launch, use, scale, and scale your vector searching service without worrying about infrastructure. It will run smoothly and securely.
Learn more