Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon EC2 Inf1 instances are specifically designed to provide efficient, high-performance machine learning inference at a competitive cost. They offer an impressive throughput that is up to 2.3 times greater and a cost that is up to 70% lower per inference compared to other EC2 offerings. Equipped with up to 16 AWS Inferentia chips—custom ML inference accelerators developed by AWS—these instances also incorporate 2nd generation Intel Xeon Scalable processors and boast networking bandwidth of up to 100 Gbps, making them suitable for large-scale machine learning applications. Inf1 instances are particularly well-suited for a variety of applications, including search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers have the advantage of deploying their ML models on Inf1 instances through the AWS Neuron SDK, which is compatible with widely-used ML frameworks such as TensorFlow, PyTorch, and Apache MXNet, enabling a smooth transition with minimal adjustments to existing code. This makes Inf1 instances not only powerful but also user-friendly for developers looking to optimize their machine learning workloads. The combination of advanced hardware and software support makes them a compelling choice for enterprises aiming to enhance their AI capabilities.

Description

Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Deep Learning AMIs
Amazon EC2
Amazon EC2 P5 Instances
Amazon EC2 Trn2 Instances
Amazon Elastic Container Service (Amazon ECS)
Amazon SageMaker
Amazon Web Services (AWS)
Azure AI Search
Azure Container Registry
Azure Data Science Virtual Machines
BotCore
Cranium
Kedro
MLflow
MXNet
ModelOp
NVIDIA Triton Inference Server
PyTorch
TensorFlow
Wizata

Integrations

AWS Deep Learning AMIs
Amazon EC2
Amazon EC2 P5 Instances
Amazon EC2 Trn2 Instances
Amazon Elastic Container Service (Amazon ECS)
Amazon SageMaker
Amazon Web Services (AWS)
Azure AI Search
Azure Container Registry
Azure Data Science Virtual Machines
BotCore
Cranium
Kedro
MLflow
MXNet
ModelOp
NVIDIA Triton Inference Server
PyTorch
TensorFlow
Wizata

Pricing Details

$0.228 per hour
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/ec2/instance-types/inf1/

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

azure.microsoft.com/en-us/products/machine-learning/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Data Labeling

Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives

AWS Neuron Reviews

AWS Neuron

Amazon Web Services
Vertex AI Reviews

Vertex AI

Google